A wide range of ocular trauma can occur concomitant with orbital fractures. The ocular Sequelae of mid-facial fractures are usually considered to be edema and ecchymosis of the soft tissues, subconjunctival hemorrhage, diplopia, iritis, retinal edema, Ptosis, enophthalmos, ocular muscle paresis, mechanical restriction of ocular movement and nasolacrimal disturbances. More severe injuries such as optic nerve trauma and retinal detachments have also been reported. Made known rates of intraocular injury range from 1% to nearly 70%
The relationship, if any, between the purity of orbital fractures and their secondary ocular problems has not been elucidated to date.
Of these, there is no agreement as to the incidence of injury. It is likely that the specialty of the physician conducting the research might account for the inconsistencies. In contrast, since our hospital protocol requires that all orbital fractures receive an ophthalmic examination, we believe that our results are unbiased; the true incidence of intraocular injury is approximately 17%.
Diplopia field: limit on up or downgaze: r/o IR entrapment vs hemorrhage/edema alone: CTEvaluation - Full Ophthalmic Exam Plus
Hertel
hypo-ophthalmos (globe ptosis)
orbit/lid emphysema 2nd to sinus wall fracture
IOP straight and upgaze (might inc w/IR entrapment)
infraorbital anesthesia in floor fracture
forced generation, forced duction
lid measurements (PF and MRD1)
![]() |
![]() |
![]() |
![]() |
The rates of injury were also compared between pure orbital floor fractures (only floor) and impure (floor and rim). Of patients who sustained a pure orbital floor fracture, intraocular injuries occurred in 5.6%, compared with only 2% that sustained an impure fracture. Intraocular injuries are more common in patients who sustained PURE orbital fractures than in patients with rim involvement (IMPURE) (p=0.05). This difference suggests that the mechanism of injury might not be the same in each; it might not simply be solely direct force transmitted to the rim as the buckling theory suggests.Intraocular Injuries
Recall that the "retropulsion" theory refers to a fracture of the orbital floor caused by sudden increase in intraorbital pressure (BLOW-OUT) which occurs when an object with sufficient force hits the aperture of the orbit and forces the soft orbital contents posteriorly. Such trauma is created by objects larger than the horizontal diameter of the orbit, such as from a fist or a ball. On the other hand, the "buckling theory" proposes that the force transmitted through the rigid orbital rim directly to the thin floor , causes the floor to fracture, usually leaving the rim intact.
If we accept that impure fractures are the lead to of direct trauma to the orbital rim and resultant buckling of the floor, then we would expect similar rates of intraocular injury between pure and impure orbital fractures. This would be the case IF the buckling theory is the correct theory for pure fractures, since both are created by the same direct force to the rim.
However, we find that the incidence of injury is significantly higher in the pure fracture group suggesting that a different mechanism is at play. It is more reasonable to envision that the acute rise in orbital pressure would lead not only to the floor fracturing, but also to a greater incidence of intraocular injury as the globe retropulses. One could argue, however, that in the case of the impure fracture, the rate of injury is lower because the force is blunted by the rim. Nevertheless, we believe that these data suggest that the retropulsion theory might be the more likely explanation for orbital fractures; one theory (retropulsion) can explain variations of ocular findings in both pure and impure fractures
Buckling:
Retropulsion:
The "retropulsion" theory, advanced by Smith and Regan, refers to a fracture of the orbital floor caused by sudden increase in intra-orbital pressure; a fracture might lead to from the hydraulic forces generated in the closed orbital cavity.
Blows from a fist, for instance, or objects larger than the horizontal diameter of the orbit, are the most frequent cause of this type of fracture
Globe to Wall:
Consequences of trauma
Double Vision
Results from an inability of both eyes to move equally
The "buckling" theory maintains that an anterior force is transmitted back into the orbit.
See pre-operative and post-operative photos below illustrating down gaze limitation of the right eye.
Surgery Indications
|
|
|
|
|
|
Medial Orbital Fracture
if indirect (blowout) extension of floor fracture, no surgery needed unless medial rectus (MR) entrapped
lid/orbit emphysema common
direct naso-orbital fracture more serious, depressed nasal bridge; compl inlc cerebral/ocular damage, ant ethmoid art. damage with severe epistaxis, CSF rhinorrhea, traumatic telecanthus, needs miniplate stabilization
Zygomatic Fracture
tripod fracture often has 4 zygoma breaks at lateral & inferior orb rim, zygoma arch, lateral wall of maxillary sinus
can involve orb floor
if displaced, can have cosmetic deformity, trismus (2o to impingement on coronoid process of mandible)
Orbital Apex Fracture
often w/traumatic optic neuropathy (needs spinal cord dose IV steroids, maybe decompression w/in 5 days, see neuro-op), other fractures
look for CSF rhinorrhea, cartoid-cavernous (CC) fistula
Orbital Roof Fracture
infrequent
might have intracranial lesions, CSF rhinorrhea, pneumocephalus
neurosurgery consult
Orbital Emphysema
if severe can cause CRAO, etc if loculated ball valve type wound
usually smaller medial wall injuries
air usually located in area of wound
if decreased Vision, high dose steroids
air decompression:
CT for localization
retrobulbar needle into air pocket
fill syringe with saline, take out plunger, watch for bubbles to appear
look on CT for intracranial air: needs neurosurgery consult
Treatment
most fractures do not require surgery
early surgery for marked muscle restriction confirmed on CT, forced duction
should observe 1-2 weeks, oral steroids (prednisone 1 mg/kg/day with taper) to decrease swelling and fibrosis
antibiotics (Keflex) and nasal decongestants (Afrin), tell patient not to blow nose to decrease orbital emphysema
Copyright © 1997-2025 EyePlastics.com. All rights reserved.